<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Name</th>
<th>L-T-P - Credits</th>
<th>Year of Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE368</td>
<td>SOFT COMPUTING</td>
<td>3-0-0-3</td>
<td>2016</td>
</tr>
</tbody>
</table>

Prerequisite: Nil

Course Objectives
- To provide the students with the concepts of soft computing techniques such as neural networks, fuzzy systems, genetic algorithms

Syllabus
Introduction to Soft Computing and Neural Networks, Fuzzy Sets and Fuzzy Logic; Fuzzy Sets, Neuro-Fuzzy Modelling, Machine Learning, Machine Learning Approach to Knowledge Acquisition

Expected outcome.
The students will be able to get an idea on:
- i. Artificial Intelligence, Various types of production systems, characteristics of production systems.
- ii. Neural Networks, architecture, functions and various algorithms involved.
- iii. Fuzzy Logic, Various fuzzy systems and their functions.
- iv. Genetic algorithms, its applications and advances
- v. The unified and exact mathematical basis as well as the general principles of various soft computing techniques.

Text Book:
1. Digital Neural Network -S.Y Kung , Prentice-Hall of India

References:
5. Simon Haykin, “Neural Networks: A Comprehensive Foundation”, Prentice Hall,

Course Plan

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
<th>Hours</th>
<th>Sem. Exam Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Introduction To Soft Computing And Neural Networks : Evolution of Computing - Soft Computing Constituents – From Conventional AI to Computational Intelligence - Adaptive Networks – Feed forward Networks – Supervised Learning</td>
<td>7</td>
<td>15%</td>
</tr>
</tbody>
</table>

FIRST INTERNAL EXAMINATION
<table>
<thead>
<tr>
<th>IV</th>
<th>Data Clustering Algorithms – Rulebase Structure Identification Neuro-Fuzzy Control.</th>
<th>7</th>
<th>15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>Applications of GA in Machine Learning - Machine Learning Approach to Knowledge Acquisition. Support Vector Machines for Learning – Linear Learning Machines – Support Vector Classification – Support Vector Regression - Applications.</td>
<td>7</td>
<td>20%</td>
</tr>
</tbody>
</table>

SECOND INTERNAL EXAMINATION

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum Marks: 100
Exam Duration: 3Hours.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: (2 x 10) =20. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: (2 x 10) =20. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: (2 x 10) =20. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.