Experiment No. 3

ZENER REGULATOR

AIM: To setup and study a zener diode shunt regulator and to plot its line and load regulation characteristics.

COMPONENTS REQUIRED: Zener diode, resistor, rheostat, voltmeter, ammeter, DC source and bread board.

THEORY: A zener diode functions as an ordinary diode when it is forward biased. It is a specially designed device to operate in the reverse bias. When it is in the reverse breakdown region, the zener voltage V_z remains almost constant irrespective of the current I_z through it. A series resistor R_s is used to limit the zener current below its maximum current rating. The current through R_s is given by the expression $I_s = I_z + I_L$, where I_L is the current through the load resistor R_L . The value of R_s must be properly selected to fulfil the following condition requirements.

When the input voltage, V_I increases I_L remains the same, I_S and I_Z increases. Similarly if input voltage decreases, I_L remains the same, I_S and I_Z decreases. But if I_Z falls lower than the minimum zener current enough to keep the zener in the breakdown region, the regulation will cease and output voltage decreases. A low input voltage can cause the regulator fail to regulate. The series resistance should be selected between R_{Smax} and R_{Smin} which are given by the expressions,

$$R_{Smin} = [V_{Imax} - V_Z]/I_{Zmax}$$
$$R_{Smax} = [V_{Imin} - V_Z]/[I_{Zmin} + I_L]$$

PROCEDURE:

- 1. Wire up the circuit on the bread board after testing all the components.
- 2. Keep the load constant. Note down the output voltage varying input from 8V to 14V in steps of 1V. Plot the line regulation graph with V_i along x-axis and V_o along y-axis. Calculate percentage line regulation using the expression $(\Delta V_o / \Delta V_i) \times 100\%$.
- 3. 3. Keep the input voltage constant (say 10V) and note down the output voltage for various values of load current starting from 0 to 5 mA, by varying R_L using a rheostat. Plot the load regulation graph with I_L along x-axis and V_o along y-axis.
- 4. To calculate percentage load regulation, mark V_{NL} and V_{FL} on y-axis on the load regulation graph. V_{NL} is the output voltage in the absence of load resistor and V_{FL} is the output voltage corresponding to rated I_L (here, 5 mA). Calculate the percentage load regulation V_R as per the equation,

$$V_{R} = \frac{V_{NL} - V_{FL}}{V_{NL}} x 100\%$$

DESIGN

Assume $V_o = 5.6 V$, $I_{Lmax} = 5mA$ Input voltage is in the range 8-14V.

Select 5.6V zener $[P_o = 400 mW, V_Z = 5.6V, r_d = 8\Omega \text{ at } I_Z = 10 mA].$

Use 2.4 k rheostat as load resistance load current can be varied from 2.4 mA and upwards.

$$I_{Zmax} = \frac{P_{max}}{V_Z} = \frac{0.4}{5.6} = 71.42mA$$

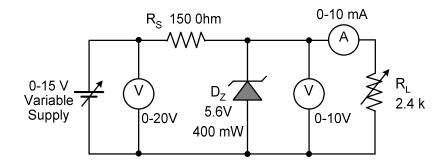
$$I_{Zmin} = 10\% \text{ of } I_{Zmax} = 0.1 \text{ x } 71.42 = 7.142mA$$

$$R_{Smax} > R_S > R_{Smin}$$

$$R_{Smax} = [V_{Imin} - V_Z] / [I_{Zmin} + I_{Lmax}] = \frac{(8 - 5.6)V}{(7.142 + 5)mA} = 197.6\Omega$$

$$(14 - 5.6)V$$

$$R_{Smin} = [V_{Imax} - V_Z] / I_{Zmax} = \frac{(14 - 5.6)V}{71.42mA} = 117.6\Omega$$


Select $R_S = 150\Omega$

Power rating of R_S

Max current through
$$R_S = I_m = [V_{Imin} - V_Z]/R_S = \frac{(14 - 5.6)V}{150\Omega} = 56mA$$

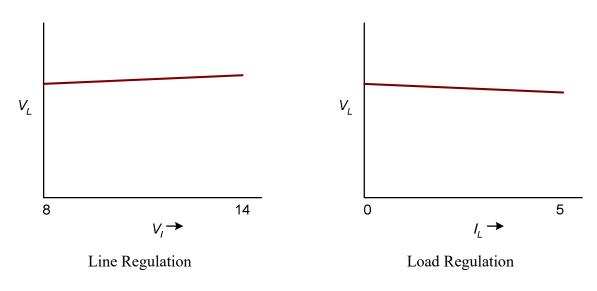
Power rating of $R_S = I_m^2 x R_S = 0.4704W >>$ Select 150 ohms 0.5W resistor

CIRCUIT DIAGRAM

TABULAR COLOUMNS

LINE REGULATION

Keeping load current constant at $I_L = 5mA$, The input voltage is varied from 8 V to 14V and corresponding observations are made.


V _{in} (volts)	V _o (volts)

LOAD REGULATION

Keeping input voltage at 10V, the load current is varied from 0 to 5 mA and observations are made. For taking reading corresponding to no load ($I_L = 0$), the loading rheostat may be disconnected.

I_L mA	V _o (volts)

EXPECTED OUTPUT PLOTS

