Amplifier Gain and Decibel Representation

DR. FRANCIS M. FERNANDEZ

DEPT. OF ELECTRICAL ENGINEERING, COLLEGE OF ENGINEERING TRIVANDRUM

What is gain?

- Gain of an amplifier or network is the ratio of output to input.
- Gain is defined for power, voltage and current as below.

Bel and Decibel

- Bel was initially defined for power loss in telephone networks but later extended to represent gain of amplifiers as well.
- Power gain in bel is defined as the common logarithm (base 10) of power ratio.

Power gain in Bel,
$$A_{P(Bel)} = \log_{10} \frac{P_{output}}{P_{input}}$$

Later a modified representation – *Decibel* was adopted and is represented as

Power gain in Decibel,
$$A_{P(dB)} = 10 \log_{10} \frac{P_{output}}{P_{input}}$$

Decibel Representation Examples

Input Power	Output Power	Ratio Gain	Gain in <i>dB</i>
P_{I}	P _O	$A_P = \frac{P_O}{P_I}$	$A_{P(dB)} = 10 \log_{10} \frac{P_O}{P_I}$
10	1000	100	20 <i>dB</i>
10	100	10	10 <i>dB</i>
10	10	1	0 <i>dB</i>
10	1	0.1	-10 <i>dB</i>

Negative decibel gain indicates attenuation

Voltage Gain

Relation between power and voltage in a network

Power,
$$P = \frac{V^2}{R}$$

Assuming constant load impedance, power is proportional to square of voltage V^2

Then, Power gain,
$$A_{P(ratio)} = \frac{\frac{V_{out}}{R}}{\frac{V_{in}^2}{R}} = \left(\frac{V_{out}}{V_{in}}\right)^2 = A_V^2$$

Corresponding decibel voltage gain, $A_{V(dB)} = 10 \log A_V^2$

ie. Voltage gain,
$$A_{V(dB)} = 20 \log A_V$$
 where $A_V = \frac{V_{out}}{V_{in}}$

Current Gain

Relation between power and current in a network

Power,
$$P = I^2 R$$

Assuming constant load impedance, power is proportional to square of current

Then, Power gain,
$$A_{P(ratio)} = \frac{I_{out}^2 R}{I_{in}^2 R} = \left(\frac{I_{out}}{I_{in}}\right)^2 = A_I^2$$

Corresponding decibel current gain, $A_{I(dB)} = 10 \log A_I^2$

ie. Current gain,
$$A_{I(dB)} = 20 \log A_I$$
 where $A_V = \frac{I_{out}}{I_{in}}$

Example 1

An amplifier has the following details: Input voltage: 1 V, Output voltage: 10 V Input impedance 10 ohms Output impedance 10 ohms Calculate the gain

Voltage gain,
$$A_V = \frac{V_{out}}{V_{in}} = \frac{10}{1} = 10$$

Input current, $I_{in} = \frac{V_{in}}{R_{in}} = \frac{1}{10} = 0.1 \text{ A}$
Output current, $I_{out} = \frac{V_{out}}{R_{out}} = \frac{10}{10} = 1 \text{ A}$
Current gain, $A_I = \frac{I_{out}}{I_{in}} = \frac{1}{0.1} = 10$

Decibel voltage gain, $A_{V(dB)} = 20 \log A_V = 20 \log 10 = 20 dB$

Decibel current gain, $A_{I(dB)} = 20 \log A_I = 20 \log 10 = 20 dB$

Input Power,
$$P_{in} = \frac{V_{in}^2}{R_{in}} = \frac{1^2}{10} = 0.1 \text{ W}$$

Output power,
$$P_{out} = \frac{V_{out}^2}{R_{out}} = \frac{10^2}{10} = 10 \text{ W}$$

Decibel power gain, $A_{P(dB)} = 10 \log A_P = 10 \log \frac{10}{0.1} = 20 \, dB$

Example 2

An amplifier yielded the following output voltage at when the input frequency is changed from 10 Hz to 200 kHz. Input is 10 mV sine wave. Plot the gain in ratio and decibel. Also find the bandwidth.

Frequency (Hz)	Output Voltage (V)
10	14
20	42
30	70
50	100
100	100
1,000	100
10,000	100
40,000	100
70,000	80
100,000	60
200,000	25

Solution:

Frequency <i>f</i>	Output Voltage <i>Vo</i>	Ratio Gain A	Gain (dB)
(Hz)	(mV)	(V _o / V _i)	20 log A
10	14	1.4	2.9
20	42	4.2	12.5
30	70	7.0	16.9
50	100	10	20.0
100	100	10	20.0
1,000	100	10	20.0
10,000	100	10	20.0
40,000	100	10	20.0
70,000	80	8	18.0
100,000	60	6	15.5
200,000	25	2.5	8.0

Plot of Ratio Gain

Plot of Decibel Gain

Fraquency, f