Power Electronics

TRIGGERING CIRCUITS

2018

Dr. Francis M. Fernandez

DEPT. OF ELECTRICAL ENGINEERING, COLLEGE OF ENGINEERING TRIVANDRUM

R - Triggering Circuit

- R₁ is the gate current limiting resistance
- R₂ is used to vary the gate current and hence firing angle

$$I_{g \max} = \frac{V_m}{R_1} \qquad \Longrightarrow \qquad R_1 \ge \frac{V_m}{I_{g \max}}$$

R limits the voltage at Gate terminal

$$R \le \frac{V_{g\max}R_1}{V_m - V_{g\max}}$$

Diode D prevents build-up of negative voltage at Gate terminal

 The phase angle at which the SCR starts conducting is called firing angle, α

Features of R-Trig Circuit

Simple circuit

- Disadvantages:
 - Performance depends on temperature and SCR characteristics
 - Minimum phase angle is typically
 2-4 degrees only (not zero degree)
 - Maximum phase angle is only 90 degrees

Problem

Design an R-triggering circuit for a half wave controlled rectifier circuit for 24 V ac supply. The SCR to be used has the following data.

 $I_{gmin} = 0.1 \text{ mA}, \quad I_{gmax} = 12 \text{ mA}, \quad V_{gmin} = 0.6 \text{V}, \quad V_{gmax} = 1.5 \text{ V}$

Solution:

(Drop across diode D is neglected)

DEPT. OF ELECTRICAL ENGINEERING, COLLEGE OF ENGINEERING TRIVANDRUM

Problem

In a resistance firing circuit for SCR, the following parameters are applicable

$$I_{gt(min)} = 0.5 \text{ mA},$$

V $_{gt(min)} = 0.7V$,

Supply voltage = 48 V, 50Hz

Resistance in gate current path = 70 k Ω .

- a) Find the firing angle for the above condition
- b) What is the resistance for which firing angle is 90 degrees

Solution

$$e_t = I_g \cdot (R_1 + R_2) + V_D + V_g$$

= 0.5×10⁻³×70×10³ + 0.6 + 0.7
= 36.3 V
$$e_t = V_m \sin \omega t$$

36.3 = $\sqrt{2}$ × 48 sin ωt

$$\sin \omega t = \frac{36.3}{\sqrt{2} \times 48} = 0.535$$
$$\omega t = \sin^{-1} \omega t = 32.3^{\circ}$$

a)

Firing angle = 32.3 degrees

Solution

$$e_t = I_g \cdot (R_1 + R_2) + V_D + V_g$$

 $\sqrt{2} \times 48 = 0.5 \times 10^{-3} \times R + 0.6 + 0.7$
 $66.6 = 0.5 \times 10^{-3} \times R$
 $R = \frac{66.6}{0.5 \times 10^{-3}} = 133 \text{ k}\Omega$

RC Triggering Circuit

Advantage over R-triggering Circuit: Controls upto 180 degrees

$$RC \ge \frac{1.3 T}{2}$$

To ensure minimum gate current

$$v_s \ge R I_{g\min} + V_{g\min} + V_{D_1}$$

$$R \le \frac{V_s - V_{g\min} - V_{D_1}}{I_{g\min}}$$

- Capacitor charges during the negative half cycle through D₂
- When SCR is turned on, capacitor C is suddenly discharged through D₂
- D₁ protects the SCR during negative half cycle

RC Trig Waveforms

 $RC \ge \frac{1.3 T}{2}$

RC Full wave trigger circuit

 Initial Capacitor voltage in each half cycle is almost zero

$$R \le \frac{v_s - V_{g\min}}{I_{g\min}}$$

Unijunction Transistor (UJT)

- Has a lightly doped n-type silicon layer to which a heavily doped p-type emitter is embedded
- The inter-base resistance is in the range of 5 10 kΩ
- This device cannot 'amplify'

UJT Equivalent Circuit

$$V_{AB_{1}} = \frac{R_{B_{1}}}{R_{B_{1}} + R_{B_{2}}} V_{BB} = \eta V_{BB}$$

 η is called intrinsic standoff ratio

Value of η varies from 0.5 - 0.8

- When V_e is more than V₁+V_D, then the diode is forward biased and a current flows through R_{B1}
- Number of carriers in R_{B1} increases and the resistance reduces
- V_e decreases with increase in I_e and the therefore the device is said to exhibit negative resistance

UJT Characteristics

At peak point, $V_e = V_1 + V_D$, At Valley point, R_{B1} is minimum

UJT parameters

Maximum emitter reverse voltage

 Maximum reverse bias which the emitter – base2 junction can tolerate without breakdown. Typ: 30V

Maximum inter-base voltage

 Maximum voltage possible between base1 and base2. Decided by the power dissipation. Typ: 35 V

Interbase resistance

• Typ: 4.7 k - 9.1 k

Intrinsic stand off ratio

• Typ: 0.56 – 0.75

Maximum peak emitter current

• Typ:2A

Emitter leakage current

- The emitter current when V_e is less than V_p and the UJT is off.
- Typ 12 μA

Typical values are of 2N2646

UJT Oscillator

- R_1 and R_2 are much less than the inter-base resistance
- The output pulses can be used to trigger an SCR

Design

$$V_C = V_{BB} \left(1 - e^{-t/RC} \right)$$

Time required for C to charge from V_v to V_p is obtained as follows

$$V_{p} = \eta V_{BB} + V_{D} = V_{v} + V_{BB} \left(1 - e^{-t/RC} \right)$$

Assuming
$$V_D = V_v$$
 $\eta = \left(1 - e^{-t/RC}\right)$

For this case, $t \cong T$

$$T = \frac{1}{f} = RC \ln\left(\frac{1}{1-\eta}\right)$$

R₁ is selected based on voltage level required to trigger the SCR

R₂ is selected using the empirical formula:

$$R_2 = \frac{10^4}{\eta V_{BB}}$$

UJT firing circuit for Half Wave Controller

Waveforms for Half Wave Controller

Full wave UJT trigger Circuit

Problem

Design a UJT relaxation oscillator using UJT2646 for triggering an SCR. The UJT has the following parameters

$$\eta = 0.63, V_{BB} = 20 \text{ V}, V_P = 13.2 \text{ V}, I_P = 50 \text{ μA}$$

 $V_V = 2 \text{ V}, I_V = 6 \text{ mA}, R_{BB} = 7 \text{ k}\Omega$, leakage current = 2.5 mA

Also find the minimum and maximum time period of oscillation.

Solution:

Assume C = 0.1
$$\mu$$
F
 $R_{\text{max}} = \frac{V_{BB} - VP}{I_P} = \frac{20 - 13.2}{50 \times 10^{-6}} = 136 \, k\Omega$
 $R_{\text{min}} = \frac{V_{BB} - V_V}{I_V} = \frac{20 - 2}{6 \times 10^{-3}} = 3 \, k\Omega$

 I_V

Approximate value of
$$R_2 = \frac{10^4}{\eta V_{BB}} = \frac{10^4}{0.63 \times 20} = 794 \, \Omega$$

$$R_1 = \frac{V_{g\min}}{Leakage\,current} = \frac{0.7}{2.5 \times 10^{-3}} = 280\,\Omega$$

$$T_{\max} = RC \ln\left(\frac{1}{1-\eta}\right) = 136 \times 10^3 \times 0.1 \times 10^{-6} \times \ln\left(\frac{1}{1-0.63}\right) = 13.5 \, ms$$

$$T_{\rm min} = 3 \times 10^3 \times 0.1 \times 10^{-6} \times \ln\left(\frac{1}{1 - 0.63}\right) = 0.3 \, ms$$

Commutation

- Commutation us the process by which a thyristor is turned off or current diverted to another path.
- □ There are two types of commutation
 - Natural Commutation
 - Forced Commutation
- In natural commutation, the reversing nature of alternating voltages turn off the thyristor
- Suitable for AC circuits only
- Current passes through a zero in every half cycle
- No external circuit is required for natural commutation

- In DC circuits, external circuits are necessary for turn off of thyristors
- Turn off with external circuits is called forced commutation

Pulse Transformer

- □ Used to trigger SCR, TRIAC etc
- Provides Electrical isolation between power circuit and control circuit

Optical Isolation

- □ Used to trigger SCR, TRIAC etc
- Provides Electrical isolation between power circuit and control circuit