Course code	Course Name	L-T-P -C	Year of Introduction
EE431	Power System Lab	0-0-3-1	2016

Prerequisites : 1. EE301 Power generation, Transmission and Protection 2. EE306 Power System Analysis

Course Objectives

- Impart practical knowledge about various power system components
- Acquire knowledge about the operation of power systems and the philosophy behind the relay settings, fault calculations etc.
- Simulate the power system operations which will be helpful in the design of power systems
- Introduce the various testing procedures used in power systems

List of Exercises/Experiments: Both software and hardware experiments are included. At least 12 experiments including minimum 4 hardware experiments are mandatory.

Part A Power System Simulation

- I. Y-Bus Formulation: Aim: To formulate a Y Bus using an appropriate algorithm for at least a four Bus system.
- II. Load flow analysis –Gauss Siedel Method

Aim: To conduct the load flow analysis of power system networks (not more than 6 bus) on any dedicated software platform using Gauss Seidel method and to verify by manual calculation at least for one iteration.

III. (a) Load flow analysis –Newton Raphson Method

Aim: To conduct the load flow analysis of power system networks (not more than 6 bus) on any dedicated software platform using Newton Raphson method.

(b) Load flow analysis –Fast Decoupled Method

Aim: To conduct the load flow analysis of power system networks (not more than 6 bus) on any dedicated software platform using Fast Decoupled method.

IV. Short Circuit Analysis – Symmetrical Faults

Aim: To conduct the fault analysis of power system networks(not more than 9 bus) on any dedicated software platform to solve a symmetrical fault and to verify by manual calculation.

V. Short Circuit Analysis – Unsymmetrical Faults

Aim: To conduct the fault analysis of power system networks(not more than 9 bus) on any dedicated software platform to solve three symmetrical faults (both at bus and in line).

VI. Stability analysis

Aim: To find the critical clearing angle by applying equal area criterion for any power system network and verify the same using any dedicated software.

VII. Automatic generation control – Single Area

Aim: To determine the change in speed, frequency and steady state error corresponding to a load disturbance in a single area power system, with and without supplementary control using any software

VIII. Automatic generation control – Two Area

Aim: To determine the change in speed, frequency and steady state error corresponding to a load disturbance in a single area power system, with and without supplementary control using any software

IX. Reactive power control

Aim: To find suitable devices for applying reactive power control of power system networks for Voltage control and Power flow control using any dedicated software.

X. Solar power calculations

Aim: To calculate the rating of solar panel required for a given area on rooftop for a given load.

Part B Power System Component Testing (Hardware experiments)

- XI. High voltage testing -Power frequency Aim: To test the given power system component (Circuit Breaker/ Insulator/ Lightning Arrester/ Air blast switch etc.) using AC Voltage.
- XII. High voltage testing -Impulse Aim: To test the given power system component (Circuit Breaker/ Insulator/ Lightning Arrester/ Air blast switchetc.) using Impulse Voltage.
- XIII. High voltage testing -DC Aim: To test the given power system component (Circuit Breaker/ Insulator/ Lightning Arrester/ Air blast switchetc.) using DC Voltage.
- XIV. Relay Testing Over current relay (Electromechanical/Static/Numerical)/ Earth fault

	Aim: To test the pick up, drop out and plot the time current characteristics of the relev	
	me relay.	
XV.	Relay Testing - Over voltage relay (Electromechanical/Static/Numerical)/ Distance	
	Aim: To test the pick up, drop out and plot the time current characteristics of	
	the relay.	
373 71		
XVI.	Aim : To determine the insulation resistance of the given LT & HT Cable by using appropriate testing equipments	
XVI	. Earth Resistance	
	Aim: To determine the resistance to earth of the given earthing system and	
	design an earthing system from soil resistivity of the given area.	
XVII	Testing of CT and PT	
	Aim: To check the specifications of the given Current transformers and	
	Potential Transformers	
XVII	Testing of transformer oil	
	Aim: To measure the dielectric strength of the given sample of Transformer oil.	
XX.	Testing of dielectric strength of solid insulating materials	
	Aim: To measure the dielectric strength of solid insulting materials (mica,	
	impregnated paper etc) using appropriate methods.	
VVI	Testing of dielectric strength of air	
	Aim: To measure the dielectric strength of air under different conditions	
	This To measure the delective sublight of an ander anterent conditions	
XXI	. Power factor improvement	
	Aim: To calculate rating of capacitors for power factor correction for a load and	
	verify it experimentally.	
XXI	II. String Efficiency of insulators	
	Aim: To determine the string efficiency of the given string of insulators.	
Expected	outcome.	
Students	will be able to	
1. A	naryse a power system by carrying out load now and short circuit	
2 4	permentations.	
2. A 3 D	esign a solar panel required for a specified area	
4. V	alidate the performance of Power System devices by appropriate tests.	
Text Boo	ks:	
1. N	agrath I J and Kothari D P, "Modern Power System analysis" Tata McGraw Hill	
2. Wadhwa C L "Electrical Power Systems" New Age International		
3. B	adri Ram and Vishwakarma D N " Power System Protection and Switch Gear"	
	ala McGraw Hill.	

4. Ned Mohan, First Course in Power Systems, Wiley.